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I. Introduction 

A. The resolution issue 
Selecting an appropriate spatial resolution is a key step in ecological modeling, 

typically described as one of the first important decisions in designing a spatially explicit 
model (e.g., Grimm and Railsback 2005; Manly et al. 2002; Starfield and Bleloch 1986). 
“Spatial resolution” refers to how finely space is depicted. Most spatially explicit models 
represent space as a collection of “cells” that each represent an area of habitat; habitat 
variables differ among cells, but variation within each cell is neglected. Most commonly, the 
entire space is represented as a grid of square cells, but some models (including the one 
used here) represent space as a mesh of irregular polygons. High-resolution (“fine-grained”) 
models use many cells that each represent a small area, while low-resolution (“coarse-
grained”) models use fewer and larger cells. 

There are several reasons why a model’s spatial resolution is important. First, 
practical reasons include that higher-resolution models tend to have higher costs in input 
data requirements and computation. When cell variables are given values from field 
observations, higher resolution can mean that field observations must be closer together. 
This difference can be especially expensive if low-cost observation methods (e.g., remote 
sensing) cannot provide the necessary resolution, so higher-cost methods (e.g., manual 
observations on the ground) are required. Computational effort for a simulation model often 
increases more than linearly with the number of cells, and the number of cells decreases 
with the square of cell width. Hence, the computational cost of higher resolution can be 
significant when large areas are modeled. However, modern data collection technology and 
computer power are reducing the importance of these practical considerations. 

A second reason for the importance of resolution is that it determines a model’s 
ability to capture the spatial variability of the systems being modeled. Because habitat 
variation is neglected within a cell, larger cells are less able to depict realistic detail. But this 
does not mean higher-resolution models are necessarily more useful, accurate, or scientific: 
the main purpose of a model is to simplify away unnecessary detail while capturing the most 
important variability. Unnecessarily high resolution can make models less accurate and 
harder to use. (Analysts of remote sensing data have long realized that too-high resolution 
can make it harder, not easier, to categorize an image into meaningful information.) 

The potential for scale artifacts are a third reason to pay attention to spatial 
resolution in ecological models. Artifacts are strong effects on results that arise from the 
details of a model’s design instead of from the underlying ecological processes and 
variables. DeAngelis and Petersen (2001) illustrated such a scale artifact in a mechanistic 
predation model. The model represented consumption of prey fish by predator fish that were 
each confined to one cell of a reservoir model. Cell size therefore determined the area a 
predator fed over, so predicted predation rates depended strongly on the model’s spatial 
resolution.  

The final, and perhaps most important, reason why spatial resolution is important is 
that ecological relations can change as spatial scale changes (Levin 1992). This realization 
was a fundamental step forward in ecology and the subject of a great deal of research, 
especially in the 1980s and 1990s, that produced many examples of relations (such as 
those between habitat and population density) that vary with scale (e.g., Bissonette 1997; 
Crawley and Harral 2001; DeCesare et al. 2012; Poff and Huryn 1998; Scott et al. 2002). An 
example familiar to stream fish biologists is velocity selection by drift-feeding fish such as 



trout. These fish often shelter in the low-velocity eddy behind cover (e.g., a boulder) while 
feeding on drift carried by the adjacent high velocities (Fausch 1984). Hence, when 
observed at a scale of a few cm, the fish is selecting low velocity; but observed over the 
entire area used for feeding it is selecting a much higher velocity. Similarly, stream fish can 
appear to avoid dense cover over short distances (presumably because it interferes with 
visual feeding), while strongly selecting for cover over longer distances (that are still close 
enough for the fish to reach quickly when a predator is detected). 

What is an appropriate resolution for an ecological model? Again, there are both 
practical and ecological factors that matter. Data resolution can be an upper limit on model 
resolution, if it is not practical to collect additional data at higher resolution. (Data at a 
higher resolution than desired can generally be aggregated to coarser grain, though 
aggregation can be expensive and inconvenient.) Habitat variability can be another factor: 
there is no need, for example, for small grid cells when habitat variables change by 
important amounts only over long distances; but if important changes in habitat occur over 
short distances then smaller cells are needed to capture the changes.  

The ecological factors affecting choice of spatial resolution can be less clear and 
obvious yet even more important. Key ecological considerations include what activities or 
processes are being modeled, what distances those activities or processes are carried out 
over, and the model’s time step. Returning to the drift-feeding fish example, suppose a 
model is designed to represent how water velocity affects food intake and growth (which 
depends on swimming effort as well as food intake). If the model is so fine-grained that it 
captures the different velocities in and outside the fish’s velocity shelter, then modeling 
movement of a fish among cells would require representing such detailed processes as 
when the fish detects prey and how much time it spends pursuing prey in the high-velocity 
cells vs. waiting in the low-velocity cell. Obviously, such a model would require a very short 
time step to capture such behaviors. Alternatively, a coarser model with cell size 
approximating the entire area used by a feeding fish could use simpler approximations and 
parameters to represent the combined effects of feeding in a high-velocity cell that also 
contains velocity shelter (the approach of the model used here).  

Spatial resolution has been a contentious issue in models applied to streamflow 
management (Durance et al. 2006; Railsback 1999; Railsback 2000; Williams 2001). A root 
cause of this contentiousness is that the widely used PHABSIM model (Bovee 1982; Bovee 
et al. 1998) neglected spatial resolution issues and made several resolution-related errors. 
Spatial resolution of traditional PHABSIM applications was typically based on guidance for 
measuring stream flow (e.g., the rule of thumb to use 20 measurements across a stream 
channel) instead of considering either habitat variability or biological considerations such as 
the area used by individual fish. The biological components of PHABSIM (“suitability criteria” 
that are essential habitat selection functions) are typically based on observations at a much 
finer resolution than the physical habitat component. The drift-feeding example above 
illustrates the kinds of errors that this resolution mismatch can induce (Railsback 1999). 
Durance et al. (2006) reviewed hundreds of instream flow studies and concluded that 
spatial scale issues were widely neglected to the detriment of study reliability. In contrast, 
there is now a substantial literature on how to properly address spatial scale issues in 
habitat selection and related models for terrestrial wildlife; e.g., Betts et al. 2006; Boyce 
2006; Corsi et al. 2000; Pribil and Picman 1997. Dunbar et al. 2012 at least discuss this 
issue in relation to instream flow modeling.  



B. Study objectives and general approach 
Our primary objective is to examine how spatial resolution—cell size—affects 

management decision-support results from an individual-based salmon model. The model, 
inSALMO, simulates salmon spawning, egg incubation, and juvenile rearing as affected by 
habitat variables such as flow, temperature, and turbidity regime; channel shape and 
hydraulics; and availability of spawning gravel and cover for feeding and hiding. For example, 
how does the model-predicted relationship between base flow and spawning success vary 
as cell size is varied? A secondary objective is to compare two approaches to habitat cell 
delineation: irregular polygons that reflect habitat variability versus square grid cells that do 
not. Irregular polygons require more effort to define and use. Square grid cells are appealing 
because they require virtually no effort to define, and offer the potential to use remotely 
sensed data to evaluate habitat variables without the need for averaging or interpretation 
into other shapes, a source of error and uncertainty. Square grid cells also greatly reduce 
the conceptual and computational complexity of simulation models and allow use of grid-
based software platforms such as NetLogo (Wilensky 1999). Some stream hydraulic models 
use irregular polygons while others use square or “warped square” grid cells. 

Our approach was simply to run inSALMO using ranges of spatial resolution in 
otherwise-identical simulation analyses, to see how results differ with cell size. Three levels 
of resolution (fine; medium; coarse) were used. One set of experiments used expert-
generated irregular polygons, and a second used a regular grid of square cells. We identified 
differences among these scenarios and investigated their causes, to draw conclusions about 
(a) how and why model results (and management recommendations based on them) vary 
with spatial resolution, (b) what resolutions seem to provide a good compromise between 
cost and model credibility, and (c) the tradeoffs in using irregular vs. square cells, such as 
how many more square cells are needed to produce results similar to those of irregular 
polygons. 

II. Methods 

A. Model summary 
The model, study sites, and decision-support simulation experiments used here were 

identical to those of a previously published application of inSALMO (Railsback et al. 2013; 
Railsback et al. 2011 provides a complete model description), with exceptions noted below. 
inSALMO is an individual-based simulation model of the freshwater life stages of salmon, 
from when adults arrive from the ocean through spawning, egg incubation, fry emergence 
and rearing, until juveniles migrate downstream out of the simulated stream reaches. The 
model, like its predecessor stream trout models, was designed primarily as a river 
management decision support tool, and makes testable predictions of how population 
characteristics (abundance, biomass, habitat selection, migration timing, etc.) respond to 
physical habitat (Railsback and Harvey 2002; Railsback et al. 2005, 2009, 2011, 2013). 

inSALMO operates at a daily time step, and can simulate one or several sequential 
years. Habitat in inSALMO is represented at two scales: reaches and cells. A simulation can 
include one or more reaches, which are contiguous lengths of stream. Each reach is 
depicted as a collection of cells. Reach variables include daily flow, temperature, and 
turbidity, which are assumed uniform among the reach’s cells. Cells have unique values for 
variables including depth and velocity (calculated from flow using an external hydraulic 



model), food availability, spawning gravel area, area providing velocity shelter for drift-
feeding fish, and distance to hiding cover. The locations of individual fish are tracked only by 
which cell the fish are in. 

Three kinds of objects in the model represent salmon. At the start of a simulation, 
adults are created as if they were appearing in spawning reaches after migration from the 
ocean. Adults then spawn and create redds, objects representing a nest of incubating eggs. 
After a temperature-dependent incubation time, surviving eggs “emerge” by turning into 
juveniles. The juvenile objects are actually “superindividuals” that each represent 10 real 
salmon fry/pre-smolts. Eggs are subject to several kinds of mortality, including 
superimposition when other redds are created in the same cell, and temperatures either 
above or below an optimal range. Juveniles select habitat by attempting to move to cells 
(within a radius that increases with fish size) that provide high “expected fitness”, a 
combination of growth and predation risk. Both growth and risk depend on habitat variables, 
and grow is also affected by competition among juveniles for food. Habitat selection is 
modeled assuming a size-based dominance hierarchy: the largest juveniles select habitat 
first, and smaller ones have access only to resources (food, velocity shelter) not used by 
bigger individuals. Juveniles migrate downstream if no available cells offer an acceptable 
expected fitness, with the threshold expected fitness to stay increasing with fish size (so fish 
become more willing to move downstream as they grow and approach smolt size).  

Our simulations use two reaches on lower Clear Creek, Shasta County, California 
(described in more detail by Railsback et al. 2013). Clear Creek is a moderate-sized 
(watershed area: 65,000 ha) stream with flows and temperatures controlled by the 
upstream Whiskeytown Reservoir. Site 3A underwent extensive restoration that widened the 
channel, added bends and habitat structures, and added spawning gravel. Site 3C was a 
control site for the habitat restoration program, and is substantially narrower, straighter, 
faster, and more uniform than 3A, with somewhat less spawning gravel.  

The model and input used in this study differ from that described by Railsback et al. 
(2011; 2013) in only a few ways. We included minor changes to model assumptions and 
parameters that resulted from calibration and validation, as documented by Railsback et al. 
(unpublished). We also developed new habitat input for the two study sites, as described 
below at Section IID. 

B. Expected effects of spatial resolution 
Spatial resolution and its potential effects were considered carefully in the design of 

inSALMO, and the model was designed to be insensitive to spatial resolution to the extent 
possible. For example, fish can use hiding cover over longer distances than they feed over (a 
frightened fish may flee several meters to cover). This difference was accommodated by 
describing cell hiding cover availability as a typical distance a fish in the cell would travel to 
find cover; this variable is independent of the cell’s size. 

Redd superimposition is one important process potentially sensitive to cell size, 
though inSALMO was designed to reduce this sensitivity. inSALMO assumes that a redd is 
subject to a risk of eggs being killed by superimposition whenever another redd is created in 
the same cell. However, that risk decreases as the cell’s area of spawning gravel increases; 
spawners are assumed more likely to put redds in cells with more gravel. Hence, dividing a 
cell of 50% spawning gravel into two cells with 0 and 100% gravel would produce the same 
amount of superimposition—if the same number of redds are created in the two cells. 
However, a spawner places its redd in the cell that (a) has highest “suitability” (a function of 



depth and velocity as well as gravel availability), and (b) is not guarded by a female adult 
that previously spawned in the cell. Dividing spawning habitat into smaller cells could 
increase superimposition by causing more adults to spawn in the now-smaller cells with 
absolutely best suitability. The unguarded area in such cells can be quite small, making 
superimposition very likely. 

Competition for food is a second process likely sensitive to cell size, because the 
number of fish feeding in a cell is an integer. The density of fish that a cell can support 
therefore can depend on its size. Imagine a cell containing just enough food to sustain three 
juvenile superindividuals (to reduce computations, inSALMO represents juvenile salmon as 
“superindividual” objects that each represent multiple—typically 20—individuals). If the cell 
was divided into two equal cells, each would sustain only one juvenile (there is no such thing 
as a half-fish to eat the food remaining in each cell). Therefore, the same area would sustain 
2/3 the number of fish as the original cell. Dividing the original cell into four would result in 
each cell having ¾ the food needed to sustain one juvenile, so the habitat would support 
none. This effect of cell size clearly also interacts with the superindividual size (number of 
juvenile salmon represented by one superindividual). To reduce (but not eliminate) this 
artifact, we generally tried to make cells larger than about 1 m2 in area, even for the finest-
resolution scenarios. 

Finally, spatial resolution is expected to affect the availability of especially good 
patches of habitat, where hydraulics and cover variables produce high growth and relative 
safety from predation. The availability of such patches strongly affects the (typically small) 
number of salmon juveniles that survive and grow before migrating downstream. For newly 
emerged juveniles, the ranges of depths and velocities providing good growth and survival 
are narrow, and often are available in small zones such as channel margins. As cell size 
increases, averaging of depth and velocity is likely to eliminate small areas of especially 
good habitat. On the other hand, averaging into larger cells could occasionally create a large 
cell of especially good habitat out of smaller cells with velocities too high and too low. 

C. Simulation experiments 
We used inSALMO as parameterized for fall-run Chinook salmon in Clear Creek by 

Railsback et al. (2013; unpublished), simulating water years 2004-08 (from arrival of adults 
in October 2003 through outmigration in the summer of 2008). Like Railsback et al. (2013), 
we used inSALMO’s “Limiting Factors Tool” which automatically generates and executes 
simulation experiments examining sensitivity to a variety of potentially manageable factors 
such as base flow, spawning gravel availability, and availability of cover for drift-feeding and 
predator-avoidance. 

The model results we analyzed are the number of “large outmigrants”, which are 
juveniles that survived to migrate downstream out of the two simulated reaches and grew to 
at least 5 cm fork length before doing so. The vast majority of juvenile salmon from Clear 
Creek (simulated and real; Railsback et al. 2013) migrate downstream immediately after 
emerging, so their numbers do not reflect juvenile rearing conditions. The number of large 
outmigrants, though, is an indicator of habitat quality for juvenile rearing as well as 
spawning and egg incubation. 

To clarify the relation between spatial resolution and superindividual size (Section 
IIB), the Limiting Factors Tool’s base flow experiment was repeated using superindividual 
sizes of 1, 2, 5, 10, 20, and 50. These experiments used only site 3A and the three polygon-



based representations of space (resolution scenarios P-FINE, P-MED, and P-CRS, explained 
below). 

D. Alternative representations of space 
We simulated six spatial resolution scenarios. All were developed from the same set 

of information, developed by the US Fish and Wildlife Service as part of instream flow and 
habitat restoration studies (Gard 2006; USFWS 2005, 2006). This information included 
cover and substrate observations and hydraulic simulations from a finite-element 
hydrodynamic model (River2D; Steffler and Blackburn 2002), both conducted at a fine 
resolution. River2D was used to model depths and velocities at each node of an irregular 
polygon mesh that averaged one node per 0.9 m2 at both sites. Substrate and cover 
observations were made at the same nodes. Even our finest-resolution scenario therefore 
required aggregation of hydrodynamic model results and field observations into larger cells.  

Three scenarios used irregular polygons, the standard approach for inSALMO. The 
irregular, fine-resolution scenario (designated “P-FINE”) used polygons delineated by hand 
by a fish biologist (J. White) familiar with the study sites. Polygons were drawn in a 
geographic information system (GIS) using depth contours and maps of habitat variables 
(generated from the node observations described above) as reference information. The goal 
of polygon delineation at this resolution was to capture as much of the site’s habitat 
variability as possible while keeping cells no smaller than ~1 m2 (estimated to be a 
minimum area to sustain at least one simulated juvenile superindividual, although the 
actual area needed to sustain one superindividual depends on depth, velocity, temperature, 
turbidity, and fish size) while not making cells smaller than necessary to represent larger 
areas of homogeneous habitat. The resulting polygons tended to be especially small and 
irregular in shape along the channel margins and banks, where bed elevation and velocity 
gradients tend to be high and cover relatively common.  

The medium-resolution irregular polygons (scenario P-MED) were created by manually 
aggregating the P-FINE polygons into cells approximately four times larger. In the GIS, cells 
were merged with the most-similar adjacent cells, using the same information (depth 
contours, etc.) as in their original delineation. The same process was repeated to create the 
coarse-resolution polygons (scenario P-CRS).  

The square cell (“grid cell”) scenarios were created using a River2D tool that exports 
depths and velocities on a grid of points, with the user selecting the point spacing. We 
treated each such point as the center of a cell, with cell depth and velocity spatially 
averaged from the original high-resolution irregular mesh. The three square cell scenarios 
(designated S-FINE, S-MED, and S-CRS) used cell sizes of 2 m (so cell area is 4 m2), 4 m (16 
m2 area), and 6 m (36 m2 area). One-meter cells proved computationally infeasible: 
approximately 17,500 cells would be required for site 3A. Along the channel margins, cell 
boundaries were clipped to include only the area within the boundaries simulated in 
River2D, and cells were excluded if less than half their area fell outside those boundaries.  

Once the cells were delineated, their static habitat variables (representing the 
fraction of cell area providing velocity shelter and spawning gravel, and a characteristic 
distance to hiding cover) were calculated from the substrate and cover variables observed at 
the hydraulic model nodes. The methods for calculating these cell habitat variables are 
described by Railsback et al. (2011; submitted). 



III. Results 

A. Habitat maps 
The six habitat scenarios are illustrated in Figure 1 and Figure 2, with statistics at 

Table 1. For fine and coarse resolutions, the irregular polygon cells are approximately 2-3 
times larger and correspondingly less numerous. At the medium resolution the size and 
number of cells differs less between irregular and square cells. 

  
Table 1. Characteristics of the resolution scenarios. 

Site Resolution scenario Number of cells Mean cell area (m2) 
 P-FINE 1371 12 
 P-MED 635 25 
3A P-CRS 189 85 
 S-FINE 4320 3.9* 
 S-MED 1090 15.4 
 S-CRS 476 34.4 
 P-FINE 825 9 
 P-MED 418 17 
3C P-CRS 95 74 
 S-FINE 1373 3.8* 
 S-MED 438 15.1 
 S-CRS 199 32.7 

*Mean areas of square cells are less than the nominal areas of 4, 16, and 36 m2 
because cells along channel margins were trimmed of areas outside the simulated channel 
(Section II.D). 

 



 

 

 
Figure 1. Resolution scenarios for site 3A. Left: irregular polygons; right: square cells. Resolution 

decreases (fine, medium, coarse) from top to bottom. Shaded cells contain water at a typical base flow of 6.2 
m3/s. Shading reflects cell depth, with darker cells deeper. 



 
 

 
 

 
 

 
 

 
 

 
 

Figure 2. Resolution scenarios for site 3C. Format as in Figure 1, except that the three irregular 
polygon scenarios appear above the square cell scenarios. 

Depth and velocity distributions for irregular polygon scenarios at a typical flow (left 
panels of Figure 3, Figure 4) indicate that fine- and medium-resolution produce very similar 
hydraulic conditions, while the coarse-resolution scenario tends to produce less area with 
depth and velocity less than about 40. For the square cell scenarios, (right panels of Figure 
3, Figure 4), each decrease in resolution produces less area with low depth and velocity. The 
loss of slow, shallow habitat with decreasing resolution is especially clear at site 3C. 



 

 
Figure 3. Depth and velocity distributions for site 3A, at a typical base flow of 6.2 m3/s. Left: irregular 

polygon cells; right: square cells. The Y axis is the site area with depth (velocity) less than the value on the X 
axis. The Y axis value at depth (velocity) = 0 represents cells that are not submerged at this flow. 

Depth (cm)

A
re

a 
(m

2 ) w
ith

 lo
w

er
 d

ep
th

0 50 100 150
0

5000

10000

15000

20000

P-FINE
P-MED
P-CRS

Depth (cm)

A
re

a 
(m

2 ) w
ith

 lo
w

er
 d

ep
th

0 50 100 150
0

5000

10000

15000

20000

S-FINE
S-MED
S-CRS

Velocity (cm/s)

A
re

a 
(m

2 ) w
ith

 lo
w

er
 v

el
oc

ity

0 50 100 150
0

5000

10000

15000

20000

Velocity (cm/s)

A
re

a 
(m

2 ) w
ith

 lo
w

er
 v

el
oc

ity

0 50 100 150
0

5000

10000

15000

20000



 

 
Figure 4. Depth and velocity distributions for site 3C. Format as in Figure 3. 
 
 

B. Simulation experiments 
The simulation experiments examined how the sensitivity of simulated production of 

large outmigrants to management variables depends on spatial resolution. The 
management variables included base flow, food availability, and hiding cover (Figure 5); 
number of spawners, availability of spawning gravel, and availability of velocity shelter 
(Figure 6); and piscivory risk, susceptibility of redds to scouring, and winter water 
temperature (Figure 7). In general, results from fine-, medium-, and coarse-resolution 
simulations produced similar trends (or lack of trends), although the magnitude of predicted 
large outmigrant production varied among resolutions. The most striking exception to this 
generality is the response to base flow (top panels of Figure 5): the P-CRS scenario produced 
different trends than the others, and at site 3C the square cells produced different trends 
than the irregular polygons. 

Depth (cm)

A
re

a 
(m

2 ) w
ith

 lo
w

er
 d

ep
th

0 50 100 150
0

2500

5000

7500

10000

P-FINE
P-MED
P-CRS

Depth (cm)

A
re

a 
(m

2 ) w
ith

 lo
w

er
 d

ep
th

0 50 100 150
0

2500

5000

7500

10000

S-FINE
S-MED
S-CRS

Velocity (cm/s)

A
re

a 
(m

2 ) w
ith

 lo
w

er
 v

el
oc

ity

0 50 100 150
0

2500

5000

7500

10000

Velocity (cm/s)

A
re

a 
(m

2 ) w
ith

 lo
w

er
 v

el
oc

ity

0 50 100 150
0

2500

5000

7500

10000



 
Figure 5. Simulation experiment results for base flow, food availability, and hiding cover availability. X 

axes represent the relative magnitude of the management variable, scaled 0-1 from lowest to highest values. 
Variable ranges are: base flow from -2 to +4 m3/s added to actual flows, food availability from 50% to 200% of 
calibrated values, and hiding cover from 50% to 150% of standard values. Y axes are the total number of large 

outmigrants over the 5 simulated years. 



 
Figure 6. Simulation experiment results for number of spawners, spawning gravel, and velocity shelter 
availability. Variable ranges for all 3 experiments are from 50% to 150% of standard values. 



 
Figure 7. Simulation experiment results for piscivory risk (daily risk varied from 90% to 110% of standard 

value), redd scour (redd depth varied from 50% to 150% of standard), and winter temperature (November-May 
temperatures varied from -4 to +4°C). 



For many of the experiments, scenarios P-FINE, P-MED, and S-MED produced results 
very similar in magnitude at site 3A, where habitat is relatively diverse. At the more uniform 
site 3C, the square grid cell scenarios consistently produced fewer large outmigrants than 
did the polygon scenarios. At 3C, the square cells produced much less area of very low 
depth and velocity (Figure 4), which could be critical for survival of newly emerged salmon 
fry. 

The differences in results among the resolution scenarios appear to result from three 
processes discussed in Section II.B. First is the effects of spatial resolution on 
superimposition mortality of redds. At site 3A, superimposition mortality decreased as 
resolution decreased, so the number of fry produced increased consistently as resolution 
decreased from fine to coarse. At 3C, superimposition mortality was nearly equal between 
the medium- and fine-resolution scenarios but lower at coarse resolution; consequently, 
more fry were produced at coarse resolution. These differences are illustrated in Figure 8 for 
the irregular polygons scenarios and base flow experiment. 

 

 
Figure 8. Superimposition mortality (percent of eggs lost to superimposition of new redds) under the 

three spatial resolution scenarios. Left: site 3A; right: site 3C. The plot depicts average mortality in the seven 
base flow scenarios (top row of Figure 5).  

The second and third processes are decreased food competition and changes in area 
of especially good feeding habitat as resolution decreases, which can have counteracting 
effects. Using more and smaller habitat cells makes the model better able to reproduce the 
small areas of especially good habitat where real fish often feed; however, smaller cells can 
exaggerate the effects of food competition among the simulated superindividuals. The 
effects of these processes are illustrated by examining the percentage of fry that survive and 
stay in the modeled sites until reaching 5 cm length (Figure 9). This percentage is especially 
low for the coarse-resolution scenario, likely a result of the model being too coarse to 
represent small areas of especially good habitat. But the percentage was also lower for fine 
resolution than for medium, presumably because of the food competition process. The 
medium resolution appears to offer the best tradeoff between these two processes for a 
superindividual size of 10.  

 

Scaled base flow

S
up

er
im

po
si

tio
n 

m
or

ta
lit

y

0 0.2 0.4 0.6 0.8 1
0

15%

30%

45%

60%

P-FINE
P-MED
P-CRS

Scaled base flow

S
up

er
im

po
si

tio
n 

m
or

ta
lit

y

0 0.2 0.4 0.6 0.8 1
0

15%

30%

45%

60%



 
Figure 9. Percentage of fry surviving and reaching 5 cm fork length in the irregular polygon base flow 

experiment. Left: site 3A; right: site 3C. The plot depicts averages from each of the base flow scenarios (top 
row of Figure 5). 

We expect the food competition process to depend on the superindividual size, 
because the superindividual size directly affects how much space is needed to support 
simulated juveniles.  The superindividual size experiment (Figure 10) indicates that 
superindividual size has only a small effect at a value of 10 (results for superindividual size 
= 10 are quite similar to those for a size of 1). At the highest superindividual size of 50, the 
number of large outmigrants is strongly reduced, especially in the fine-resolution scenario, 
indicating that interactions due to food competition are strong. These results indicate that 
when superindividual size is 10, food competition is a partial but not major cause of 
differences among the resolution scenarios. 
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Figure 10. Results of the superindividual size experiment. 
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IV. Discussion and Conclusions 
Our results indicate that several processes cause inSALMO’s predictions of large 

outmigrant production to differ with how space is represented, and that the importance of 
some processes can differ among sites. At site 3A, which is larger and has habitat that 
varies more—but relatively gradually—over space, medium-resolution polygons and medium-
resolution square cells produced results quite similar to those of fine-resolution polygons. At 
site 3C, where habitat is more uniform and pockets of especially good juvenile rearing 
habitat are smaller and more isolated, medium-resolution polygons produced results similar 
to those of fine-resolution polygons but none of the square-cell scenarios did.  

One process clearly causing the differences among resolution scenarios is the 
reduced ability of larger cells to represent the relatively rare but important areas of low-
depth and low-velocity habitat. This kind of habitat is especially important for inSALMO 
because it provides high survival and growth of newly emerged juvenile salmon. The loss of 
low-depth and low-velocity habitat area with increasing cell size is much worse for square 
cells than for irregular polygons because our polygons were carefully shaped to retain as 
much habitat variation as possible.  

The sensitivity of inSALMO’s redd superimposition submodel to cell size also appears 
to have strong effects at the Clear Creek sites, where superimposition is the dominant cause 
of simulated egg mortality. This sensitivity could probably be reduced by introducing some 
uncertainty in the simulated spawners’ ability to identify the best possible cell for spawning. 
The current formulation assumes spawners perfectly sense which cell offers highest 
“suitability” and therefore concentrates spawning in those cells. Adding some randomness 
to this sensing ability may reduce superimposition rates and make them less sensitive to 
cell size. 

Competition for the food in a cell also causes some effects of spatial resolution, and 
those effects interact, predictably, with the juvenile superindividual size. Smaller cells 
require smaller superindividuals to avoid food competition artifacts, with negative 
consequences to computational feasibility. Our analyses indicated that representing 10-20 
juveniles per superindividual had little effect when fine- and medium-resolution irregular 
polygons were used. 

Overall, our analyses indicate that medium-resolution irregular polygons combined 
with a superindividual size of 10-20 provide a good compromise between computational 
demand and model accuracy. Our medium-resolution polygons averaged about 25 m2 in 
area but were much smaller in areas such as channel margins where gradients in habitat 
are especially steep and important to juvenile salmon. Square cells of approximately 4 m 
width also appear capable of producing relatively accurate results (compared to fine-
resolution polygons) at sites where habitat conditions vary relatively gradually over space. 
  



V. References 
 
Betts, M. G., A. W. Diamond, G. J. Forbes, M.-A. Villard, and J. Gunn. 2006. The importance of 

spatial autocorrelation, extent and resolution in predicting forest bird occurrence. 
Ecological Modelling 191:197-224. 

Bissonette, J. A. 1997. Scale-sensitive ecological properties: historical context, current 
meaning. Pages 3-31 in J. A. Bissonette, editor. Wildlife and landscape ecology: 
effects of pattern and scale. Springer-Verlag, New York. 

Bovee, K. D. 1982. A guide to stream habitat analysis using the Instream Flow Incremental 
Methodology. U. S. Fish and Wildlife Service, Office of Biological Services, Instream 
Flow Information Paper 12, FWS/OBS-82/26. 

Bovee, K. D., and coauthors. 1998. Stream habitat analysis using the instream flow 
incremental methodology. U. S. Geological Survey, Biological Resources Division, 
USGS/BRD-1998-0004, Fort Collins, Colorado. 

Boyce, M. S. 2006. Scale for resource selection functions. Diversity and Distributions 
12:269-276. 

Corsi, F., J. de Leeuw, and A. Skidmore. 2000. Modeling species distributions with GIS. 
Pages 389-434 in L. Boitani, and T. K. Fuller, editors. Research Techniques in Animal 
Ecology, Controversies and Consequences. Columbia University Press, New York. 

Crawley, M. J., and J. E. Harral. 2001. Scale dependence in plant biodiversity. Science 
291:864-868. 

DeAngelis, D. L., and J. H. Petersen. 2001. Importance of the predator's ecological 
neighborhood in modeling predation on migrating prey. Oikos 94:315-325. 

DeCesare, N. J., and coauthors. 2012. Transcending scale dependence in identifying habitat 
with resource selection functions. Ecological Applications 22(4):1068-1083. 

Dunbar, M. J., K. Alfredson, and A. Harby. 2012. Hydraulic-habitat modelling for setting 
environmental river flow needs for salmonids. Fisheries Management and Ecology 
19:500-517. 

Durance, I., C. Lepichon, and S. J. Ormerod. 2006. Recognizing the importance of scale in 
the ecology and management of riverine fish. River Research and Applications 
22:1143-1152. 

Fausch, K. D. 1984. Profitable stream positions for salmonids: relating specific growth rate 
to net energy gain. Canadian Journal of Zoology 62:441-451. 

Gard, M. 2006. Modeling changes in salmon spawning and rearing habitat associated with 
river channel restoration. International Journal of River Basin Management 4:201–
211. 

Grimm, V., and S. F. Railsback. 2005. Individual-based modeling and ecology. Princeton 
University Press, Princeton, New Jersey. 

Levin, S. A. 1992. The problem of pattern and scale in ecology. Ecology 73(6):1943-1967. 
Manly, B. F. J., L. L. McDonald, D. L. Thomas, T. L. McDonald, and W. P. Erickson. 2002. 

Resource selection by animals, Statistical design and analysis for field studies, 
Second edition. Kluwer Academic Publishers, Boston. 

Poff, N. L., and A. D. Huryn. 1998. Multi-scale determinants of secondary production in 
Atlantic salmon (Salmo salar) streams. Canadian Journal of Fisheries and Aquatic 
Sciences 55:201-217. 



Pribil, S., and J. Picman. 1997. The importance of using the proper methodology and spatial 
scale in the study of habitat selection by birds. Canadian Journal of Zoology 75:1835-
1844. 

Railsback, S. F. 1999. Reducing uncertainties in instream flow studies. Fisheries 24(4):24-
26. 

Railsback, S. F. 2000. Instream flow assessment methods: guidance for evaluating instream 
flow needs in hydropower licensing. EPRI, TR-1000554, Palo Alto, California. 

Railsback, S. F., and B. C. Harvey. 2002. Analysis of habitat selection rules using an 
individual-based model. Ecology 83(7):1817-1830. 

Railsback, S. F., B. C. Harvey, J. W. Hayse, and K. E. LaGory. 2005. Tests of theory for diel 
variation in salmonid feeding activity and habitat use. Ecology 86(4):947-959. 

Railsback, S. F., B. C. Harvey, S. K. Jackson, and R. H. Lamberson. 2009. InSTREAM: the 
individual-based stream trout research and environmental assessment model. USDA 
Forest Service, Pacific Southwest Research Station, PSW-GTR-218, Albany, California. 

Railsback, S. F., B. C. Harvey, and J. L. White. 2011. inSALMO version 1.0: Model 
improvements and demonstration application to Chinook salmon spawning, 
incubation, and rearing in Clear Creek, California. Lang, Railsback & Associates, 
Arcata, CA. 

Railsback, S. F., M. Gard, B. C. Harvey, J. L. White, and J. K. H. Zimmerman. 2013. Contrast 
of degraded and restored stream habitat using an individual-based salmon model. 
North American Journal of Fisheries Management 33:384-399. 

Railsback, S. F., B. C. Harvey, and J. L. White. Unpublished. Calibration and Validation of 
inSALMO for Fall Chinook Salmon in Lower Clear Creek, California. Report prepared 
by Lang, Railsback & Associates, Arcata, CA, for USFWS Bay Delta Fish and Wildlife 
Office. 

Railsback, S. F., B. C. Harvey, and J. L. White. Submitted. Effects of spatial extent on 
simulated relations between habitat and salmon populations. MS submitted to River 
Research and Applications. 

Scott, J. M., and coauthors, editors. 2002. Predicting species occurrences: issues of 
accuracy and scale. Island Press, Washington, D. C. 

Starfield, A. M., and A. L. Bleloch. 1986. Building models for conservation and wildlife 
management. Burgess International Group, Inc., Edina, Minnesota. 

Steffler, P., and J. Blackburn. 2002. River2D two-dimensional depth averaged model of river 
hydrodynamics and fish habitat, introduction to depth averaged modeling and user's 
manual. University of Alberta. 

USFWS (U. S. Fish and Wildlife Service). 2005. Monitoring of restoration projects in Clear 
Creek using 2-dimensional modeling methodology. USFWS, Sacramento Fish and 
Wildlife Office, Sacramento, California. 

USFWS (U. S. Fish and Wildlife Service). 2006. Phase 3A Clear Creek restoration: 2-d 
modeling final report. USFWS, Sacramento Fish and Wildlife Office, Sacramento, 
California. Available at: www.fws.gov/sacramento/Fisheries/Instream-
Flow/fisheries_instream-flow_reports.htm. 

Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected 
Learning and Computer-based Modeling, Northwestern University, Evanston, IL. 

Williams, J. G. 2001. Tripping over spatial scales: a comment on Guay et al. (2000). 
Canadian Journal of Fisheries and Aquatic Sciences 58:2105-2107. 

 


	I. Introduction
	A. The resolution issue
	B. Study objectives and general approach

	II. Methods
	A. Model summary
	B. Expected effects of spatial resolution
	C. Simulation experiments
	D. Alternative representations of space

	III. Results
	A. Habitat maps
	B. Simulation experiments

	IV. Discussion and Conclusions
	V. References

